Interrogation 3 - CORRECTION

Exercice 0.1. Calculer les intégrales suivantes :

1. $\int_0^{\frac{\pi}{2}} x \sin x dx$ (intégration par parties). Les différentes fonctions étant de classe \mathscr{C}^1 sur $\left[0; \frac{\pi}{2}\right]$, par intégration par parties avec $u = x, v' = \sin x$:

$$\int_0^{\frac{\pi}{2}} x \sin x dx = [uv]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} u'v$$

$$= [-x \cos x]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos x dx$$

$$= [-x \cos x]_0^{\frac{\pi}{2}} + [\sin x]_0^{\frac{\pi}{2}}$$

$$= 0 - 0 + 1 - 0$$

$$= 1$$

2. $\int_0^1 \frac{e^x}{\sqrt{e^x+1}} dx \quad \text{(changement de variable } u=e^x\text{)}.$ Posons le changement de variable $u=e^x$ avec $x=\ln u$ et $du=e^x dx$. La variable x varie de x=0 à x=1, donc la variable $u=e^x$ varie de u=1 à u=e.

$$\int_0^1 \frac{e^x dx}{\sqrt{e^x + 1}} dx = \int_1^e \frac{du}{\sqrt{u + 1}}$$
$$= [2\sqrt{u + 1}]_1^e$$
$$= 2\sqrt{e + 1} - 2\sqrt{2}$$

3. $\int_0^1 \frac{1}{(1+x^2)^2} dx$ (changement de variable $x = \tan t$). Indication: $1 + \tan^2 t = \frac{1}{\cos^2 t}$.

Posons le changement de variable $x = \tan t$, alors on a $dx = (1 + \tan^2 t) dt$, $t = \arctan x$ et on sait aussi que $1 + \tan^2 t = \frac{1}{\cos^2 t}$. Comme x varie de x = 0 à x = 1 alors t doit varier de $t = \arctan 0 = 0$ $\dot{a} t = \arctan 1 = \frac{\pi}{4}.$

$$\int_0^1 \frac{1}{(1+x^2)^2} dx = \int_0^{\frac{\pi}{4}} \frac{1}{(1+\tan^2 t)^2} \left(1+\tan^2 t\right) dt$$

$$= \int_0^{\frac{\pi}{4}} \frac{dt}{1+\tan^2 t}$$

$$= \int_0^{\frac{\pi}{4}} \cos^2 t dt$$

$$= \frac{1}{2} \int_0^{\frac{\pi}{4}} (\cos(2t) + 1) dt$$

$$= \frac{1}{2} \left[\frac{1}{2} \sin(2t) + t\right]_0^{\frac{\pi}{4}}$$

$$= \frac{1}{4} + \frac{\pi}{8}$$

Exercice 0.2. Rappeler le théorème sur les intégrales impropres de Riemann.

- $\int_0^1 \frac{1}{t^{\alpha}} dt$ est convergente si, et seulement si, $\alpha < 1$. Dans ce cas $\int_0^1 \frac{1}{t^{\alpha}} dt = \frac{1}{1-\alpha}$.
- $\int_1^{+\infty} \frac{1}{t^{\alpha}} dt$ est convergente si, et seulement si, $\alpha > 1$. Dans ce cas $\int_1^{+\infty} \frac{1}{t^{\alpha}} dt = \frac{1}{\alpha - 1}$.