Chap.42: Espaces probabilisés finis

1 Expérience aléatoire, univers et événements

1.1 Expérience aléatoire

Définition 1.1. On appelle expérience aléatoire une expérience :

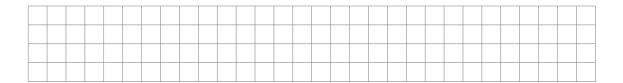
- dont le résultat est soumis au hasard
- dont tous les résultats possibles sont connus
- reproductible à l'identique

Exemple 1.2. 1. On lance une pièce de monnaie en l'air puis on observe la face visible lorsqu'elle tombe.

- 2. On lance un dé à six faces et on observe le numéro obtenu sur la face visible.
- 3. On compte le nombre de fois qu'il faut lancer un dé pour obtenir un 6 pour la première fois.

Définition 1.3. On appelle **issue** de l'expérience aléatoire un des résultats possibles de cette expérience aléatoire. On appelle **univers** associé à une expérience aléatoire l'ensemble des issues de cette expérience aléatoire. On le note généralement Ω .

Application 1.4. Déterminer les univers respectifs des différentes expériences aléatoires décrites dans l'exemple précédent.



1.2 Événement

Définition 1.5. On considère une expérience aléatoire d'univers Ω .

Un événement associé à cet expérience aléatoire est un sous ensemble (ou partie) de Ω .

L'ensemble des événements est donc $\mathscr{P}(\Omega)$ (ensemble des parties de Ω).

Exemple 1.6. Dans l'exemple du lancer de dé, l'événement $A = \{1; 3; 5\}$ est un événement lié à l'expérience aléatoire. On peut aussi définir l'événement A comme « le résultat du lancer est un nombre impair ».

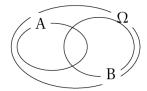
Définition 1.7. A l'issue de l'expérience aléatoire, on dira que l'événement A est réalisé si l'issue ω de l'expérience est un élément de A. On dit aussi que ω est une **issue favorable** à A.

 Ω est l'événement certain, ; \emptyset est l'événement impossible.

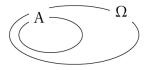
Un événement de la forme $\{\omega\}$ (ne comportant qu'une seule issue) est appelé un événement élémentaire.

Exemple 1.8. L'issue 1 est une issue favorable à l'événement $A = \{1, 3, 5\}$. L'événement 1 est un événement élémentaire.

Définition 1.9. • L'événement A OU B est l'événement $A \cup B$ constitué de toutes les issues favorables à A ou à B.



- L'événement A ET B est l'événement $A \cap B$ constitué de toutes les issues favorables à A et à B.
- L'événement \overline{A} , appelé événement contraire de A est constitué de toutes les issues qui ne sont pas favorables à A.



Exemple 1.10. Dans l'exemple du lancer de dé, l'événement contraire de l'événement $A = \{1; 3; 5\}$ est :

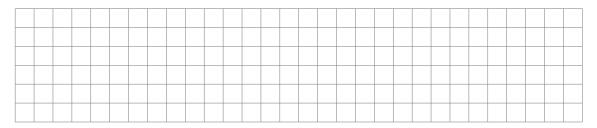
Définition 1.11. Deux événements $(A, B) \in (\mathscr{P}(\Omega))^2$ sont dits **incompatibles** lorsque $A \cap B = \emptyset$.

Application 1.12. On joue à la bataille navale sur un échiquier carré de 10 par 10, les lignes étant numérotées de 1 à 10 et les colonnes de A à J. On choisit une case au hasard de l'échiquier que l'on annonce ensuite à son adversaire en suivant le protocole suivant : on lance un premier dé dont les faces sont numérotées de 1 à 10 (A = 1, B = 2, etc.), ce dernier donnant la référence de la colonne, puis on relance ce même dé pour obtenir le numéro de la ligne.

On considère les événements suivants :

- E_1 : « notre tir porte sur une case des 3 premières colonnes »;
- \bullet E_2 : « notre tir porte sur une case des 5 dernières lignes »
- E_3 : « notre tir porte sur une case de la ligne 5 »;
- E_4 : « notre tir porte sur la case A2 ».

Décrire les événements E_1, E_2, E_3 et E_4 .



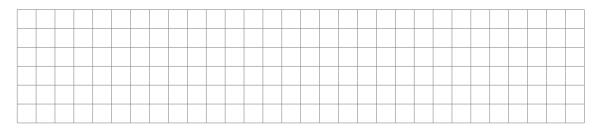
Application 1.13. 1. On choisit au hasard un lettre de l'alphabet et on considère les deux événements :

- C: « on obtient une consonne »;
- ullet V : « on obtient une voyelle ».

 $Sont\mbox{-}ils\ incompatibles\ ?$

- 2. On choisit un nombre au hasard entre 1 et 10, et on considère les deux événements :
 - P: « on obtient un nombre pair »;
 - R: « on obtient un nombre premier ».

Sont-ils incompatibles?



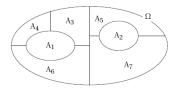
Définition 1.14. Soit $(A_1, ..., A_r)$ une famille d'événements. On dit que cette famille est un **système complet d'événements** (S.C.E.) lorsque les deux conditions suivantes sont vérifiées :

• les événements sont deux à deux incompatibles :

$$\forall (i,j) \in [1,r], i \neq j \Rightarrow A_i \cap A_j = \emptyset;$$

• l'union de tous les événements est Ω :

$$\bigcup_{i=1}^{r} A_i = \Omega$$

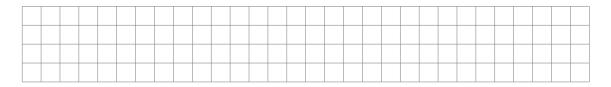


Remarque 1.15. • Si A est un événement alors $\{A, \overline{A}\}$ est un système complet d'événements.

• L'ensemble des événements élémentaires constituant un univers fini constitue un S.C.E.

Si
$$\Omega = \{e_1, ..., e_m\}$$
 alors $(\{e_1\}, \{e_2\}, ..., \{e_m\})$ est un S.C.E.

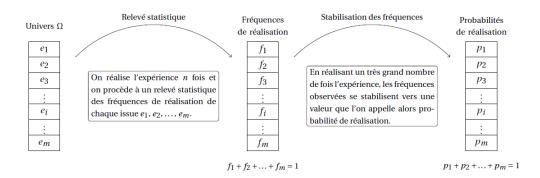
Application 1.16. Dans l'exemple du lancer de dé, $\{\{1\}; \{2;4\}; \{3;5;6\}\}$ est un S.C.E. Trouver un autre S.C.E.



2 Probabilités sur un univers fini

Remarque 2.1. Des fréquences aux probabilités.

On considère une expérience aléatoire pouvant conduire à plusieurs issues ou éventualités notées $e_1, ..., e_m$.



Définition 2.2. Soit Ω un ensemble fini non vide. On appelle probabilité sur Ω toute application $p: \mathscr{P}(\Omega) \to [0;1]$ qui vérifie :

•
$$p(\Omega) = 1$$

• Si A et B sont incompatibles alors :

$$p(A \cup B) = p(A) + p(B)$$

On dit alors que (Ω, p) est un **espace probabilisé fini**. Pour tout $A \in \mathscr{P}(\Omega)$, on appelle probabilité de A le nombre $p(A) \in [0; 1]$.

Proposition 2.3. Soit A un événement. Sa probabilité est la somme des probabilités des issues élémentaires qui le composent :

$$p(A) = \sum_{w_i \in A} p(\{w_i\})$$

Exemple 2.4. Dans un jeu de pile ou face, on peut définir plusieurs probabilités sur Ω :

- p_1 telle que $p_1(\{Pile\}) = 0, 5$, $p_1(\{Face\}) = 0, 5$, $p_1(\Omega) = 1$ et $p_1(\emptyset) = 0$ correspond à une pièce équilibrée.
- p_2 telle que $p_2(\{Pile\}) = 0, 2$, $p_2(\{Face\}) = 0, 8$, $p_2(\Omega) = 1$ et $p_2(\emptyset) = 0$ correspond à une pièce truquée.
- p_3 telle que $p_3(\{Pile\}) = 1$, $p_3(\{Face\}) = 0$, $p_3(\Omega) = 1$ et $p_3(\emptyset) = 0$ correspond à une pièce truquée tombant toujours sur Pile.

Proposition 2.5. Soit un espace probabilisé (Ω, p) et soient deux événements A et B. Alors :

- $p(\emptyset) = 0$.
- $p(\overline{A}) = 1 p(A)$.
- $Si\ A \subset B\ alors\ p(A) \leq p(B)$.
- $p(A \cup B) = p(A) + p(B) p(A \cap B)$

Remarque 2.6. Lorsque un événement A est "plus petit" que B, dans le sens où $A \subset B$, alors $p(A) \leq p(B)$. C'est la **croissance de la probabilité**. Attention toutefois : il se peut que $A \subsetneq B$ et que p(A) = p(B) (cela se produit lorsque $p(B \setminus A) = 0$).

Théorème 2.7. Soit $\Omega = \{\omega_1, ..., \omega_n\}$ un univers fini associé à une expérience aléatoire et soit $\mathcal{P}(\Omega)$ l'ensemble des événements.

Si $p_1, p_2, ..., p_n$ sont des nombres réels positifs de somme 1 alors il existe une unique probabilité p sur $\mathscr{P}(\Omega)$ telle que :

$$\forall i \in [1; n], p(\{x_i\}) = p_i$$

Autrement dit, une probabilité sur un univers fini est entièrement déterminée par la connaissance des probabilités des évènements élémentaires.

Application 2.8. Les faces d'un dé cubique sont numérotées de 1 à 6 et la probabilité d'apparition d'un numéro est donné par le tableau ci-dessous.

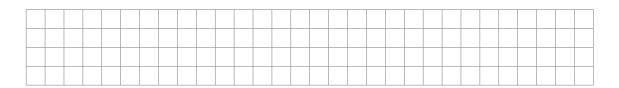
Numéro de la face	1	2	3	4	5	6
Probabilité	0,160	0,168	0,179	0,173	0,148	0,172
d'apparition de la face						

Quelle est la probabilité lors, d'un lancer de ce dé, d'obtenir :

- 1. Un numéro pair?
- 2. Un numéro impair?
- 3. Un numéro strictement supérieur à 3?

Application 2.9. Un dé cubique pipé est tel que la probabilité d'obtenir un 6 est $\frac{1}{4}$, tandis que les cinq autres événements élémentaires correspondant aux faces 1 à 5, ont la même probabilité. Déterminer la probabilité de chacun des événements suivants :

- 1. Le dé tombe sur 3.
- 2. Le dé tombe sur un nombre impair.
- 3. Le dé tombe sur un nombre pair.



3 Équiprobabilité

Définition 3.1. On dit qu'il y a équiprobabilité sur (Ω, p) lorsque les probabilités de tous les événements élémentaires sont égales. Si Ω est constitué de n événements élémentaires :

$$p(\{w_1\}) = p(\{w_2\}) = \ldots = p(\{w_n\}) = \tfrac{1}{n}$$

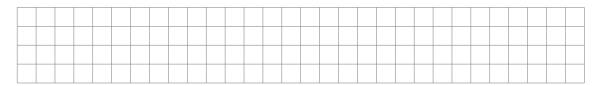
Proposition 3.2. S'il y a équiprobabilité sur l'univers fini Ω alors tout événement A a une probabilité :

$$P(A) = \frac{card(A)}{card(\Omega)}$$

6

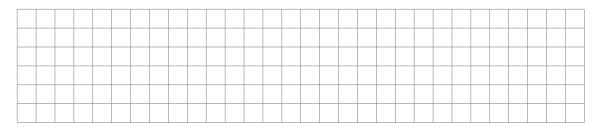
Application 3.3. On lance successivement deux dés équilibrés.

- 1. Quel est l'univers Ω ? Quel est son cardinal?
- 2. Quelle est la probabilité que la somme des résultats obtenus soit 6 ?



Application 3.4. On tire simultanément 3 jetons numérotés indiscernables dans une urne contenant 5 jetons blancs et 10 jetons rouges.

- 1. Quel est l'univers Ω ? Quel est son cardinal?
- 2. Est-on en situation d'équiprobabilité?
- 3. Déterminer la probabilité de l'évènement A « le tirage comporte au moins un jeton rouge ».



Application 3.5. 1. On lance une pièce de monnaie truquée de sorte qu'il y ait deux fois plus de chances de tomber sur Pile que sur Face. Déterminer l'univers Ω ainsi que les probabilités des événements élémentaires.

2. On lance un dé, il y a une chance sur deux que le dé fournisse un 6, les autres faces étant équiprobables. Déterminer la probabilité d'obtenir un 1.

