Devoir Surveillé 3 - CORRECTION

Durée : 4 heures Calculatrice interdite

Exercice 0.1. Lancers successifs d'un dé bicolore. On dispose de deux dés à six faces, notés A et B. Le dé A a 4 faces rouges et 2 faces blanches. Le dé B a 2 faces rouges et 4 faces blanches. On dispose également d'une pièce truquée : la probabilité d'obtenir Pile lors d'un lancer vaut $\frac{1}{3}$. Pour un entier $n \geq 3$ fixé, on effectue l'expérience aléatoire suivante :

- on lance une fois la pièce de monnaie;
- si on obtient Pile, alors on effectue n lancers successifs du dé A;
- si on obtient Face, alors on effectue n lancers successifs du dé B.

On admet que cette expérience aléatoire est décrite par un espace probabilisé (Ω, \mathbb{P}) , et que les n lancers successifs d'un même dé sont mutuellement indépendants. Dans cet espace probabilisé, on considère les événements suivants :

- A: "on joue avec le dé A";
- B: "on joue avec le dé B";
- $\forall k \in \{1, \dots, n\}, R_k$: "on obtient une face rouge lors du k^e lancer de $d\acute{e}$ ".
- 1. Que valent $\mathbb{P}(A)$ et $\mathbb{P}(B)$?

 L'événement A est réalisé si et seulement si on obtient "Pile" lors du lancer de la pièce. On donc $\mathbb{P}(A) = \frac{1}{3}$. De plus, B est l'événement contraire de A, donc $\mathbb{P}(B) = 1 \mathbb{P}(A) = \frac{2}{3}$
- 2. Calculer $\mathbb{P}(R_1)$. On pourra utiliser la formule des probabilités totales. $\{A, B\}$ est un système complet d'événements, donc d'après la formule des probabilités totales :

$$\mathbb{P}(R_1) = \mathbb{P}_A(R_1) \times \mathbb{P}(A) + \mathbb{P}_B(R_1) \times \mathbb{P}(B)$$

D'après la structure des dés A et B, on a :

$$\begin{cases} \mathbb{P}_A(R_1) = \frac{4}{6} = \frac{2}{3} \\ \mathbb{P}_B(R_1) = \frac{2}{6} = \frac{1}{3} \end{cases}$$

donc:

$$\mathbb{P}(R_1) = \frac{2}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{2}{3} = \frac{4}{9}$$

3. Calculer $\mathbb{P}(R_1 \cap R_2)$. On pourra utiliser $A \cap R_1 \cap R_2$, $B \cap R_1 \cap R_2$ et la formule des probabilités composées.

On a $R_1 \cap R_2 = (A \cap R_1 \cap R_2) \cup (B \cap R_1 \cap R_2)$ (puisque $\{A, B\}$ est un système complet d'événements), et cette réunion est disjointe, donc :

$$\mathbb{P}(R_1 \cap R_2) = \mathbb{P}(A \cap R_1 \cap R_2) + \mathbb{P}(B \cap R_1 \cap R_2)$$

Ensuite, la formule des probabilités composées donne :

$$\mathbb{P}(R_1 \cap R_2) = \mathbb{P}(A) \times \mathbb{P}_A(R_1) \times \mathbb{P}_{A \cap R_1}(R_2) + \mathbb{P}(B) \times \mathbb{P}_B(R_1) \times \mathbb{P}_{B \cap R_1}(R_2)$$
$$= \frac{1}{3} \times \frac{2}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} = \frac{6}{27} = \frac{2}{9}$$

4. Les événements R_1 et R_2 sont-ils indépendants? Calculons $\mathbb{P}(R_2)$. On a la réunion disjointe $R_2 = (R_1 \cap R_2) \cup (\overline{R_1} \cap R_2)$, donc

$$\mathbb{P}\left(R_{2}\right) = \mathbb{P}\left(R_{1} \cap R_{2}\right) + \mathbb{P}\left(\overline{R_{1}} \cap R_{2}\right) = \frac{2}{9} + \mathbb{P}\left(\overline{R_{1}} \cap R_{2}\right)$$

Pour calculer $\mathbb{P}\left(\overline{R_1} \cap R_2\right)$, on utilise la même méthode que dans la question précédente :

$$\begin{split} \mathbb{P}\left(\overline{R_1} \cap R_2\right) &= \mathbb{P}(A) \times \mathbb{P}_A\left(\overline{R_1}\right) \times \mathbb{P}_{A \cap \overline{R_1}}\left(R_2\right) + \mathbb{P}(B) \times \mathbb{P}_B\left(\overline{R_1}\right) \times \mathbb{P}_{B \cap \overline{R_1}}\left(R_2\right) \\ &= \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{2}{3} \times \frac{1}{3} = \frac{6}{27} = \frac{2}{9} \end{split}$$

Finalement $\mathbb{P}(R_2) = \frac{2}{9} + \frac{2}{9} = \frac{4}{9}$. On constate donc que $\mathbb{P}(R_1) \times \mathbb{P}(R_2) = \frac{4}{9}$.

On constate donc que $\mathbb{P}(R_1) \times \mathbb{P}(R_2) = \frac{16}{81} \neq \mathbb{P}(R_1 \cap R_2)$, ce qui montre que R_1 et R_2 ne sont pas indépendants.

5. Calculer la probabilité d'obtenir "rouge" au 3^e lancer de dé sachant que l'on a obtenu "rouge" aux deux premiers lancers de dé. On cherche $\mathbb{P}_{R_1 \cap R_2}(R_3) = \frac{\mathbb{P}(R_1 \cap R_2 \cap R_3)}{\mathbb{P}(R_1 \cap R_2)}$ Calculons le numérateur :

$$\mathbb{P}\left(R_{1}\cap R_{2}\cap R_{3}\right)=\mathbb{P}(A)\times\mathbb{P}_{A}\left(R_{1}\cap R_{2}\cap R_{3}\right)+\mathbb{P}(B)\times\mathbb{P}_{B}\left(R_{1}\cap R_{2}\cap R_{3}\right)$$

Vu que les lancers successifs d'un même dé sont mutuellement indépendants, on a :

$$\begin{cases} \mathbb{P}_A \left(R_1 \cap R_2 \cap R_3 \right) = \left(\frac{2}{3} \right)^3 \\ \mathbb{P}_B \left(R_1 \cap R_2 \cap R_3 \right) = \left(\frac{1}{3} \right)^3 \end{cases}$$

donc:

$$\mathbb{P}(R_1 \cap R_2 \cap R_3) = \frac{1}{3} \times \left(\frac{2}{3}\right)^3 + \frac{2}{3} \times \left(\frac{1}{3}\right)^3 = \frac{10}{81}$$

Finalement, $\mathbb{P}_{R_1 \cap R_2}(R_3) = \frac{\frac{10}{81}}{\frac{2}{9}} = \frac{5}{9}$

6. Montrer que la probabilité p_n d'avoir joué avec le dé A sachant que l'on a obtenu "rouge" à chacun des n lancers du dé est :

$$p_n = \frac{1}{1 + \frac{1}{2^{n-1}}}$$

. On cherche:

$$p_n = \mathbb{P}_{R_1 \cap \dots \cap R_n}(A) = \frac{\mathbb{P}(A \cap R_1 \cap \dots \cap R_n)}{\mathbb{P}(R_1 \cap \dots \cap R_n)}$$
$$= \frac{\mathbb{P}(A \cap R_1 \cap \dots \cap R_n)}{\mathbb{P}(A \cap R_1 \cap \dots \cap R_n) + \mathbb{P}(B \cap R_1 \cap \dots \cap R_n)}$$

Pour calculer $\mathbb{P}(A \cap R_1 \cap \cdots \cap R_n)$, on procède comme dans la question précédente, en utilisant l'indépendance mutuelle des lancers d'un même dé :

$$\mathbb{P}(A \cap R_1 \cap \dots \cap R_n) = \mathbb{P}_A(R_1 \cap \dots \cap R_n) \times \mathbb{P}(A) = \left(\frac{2}{3}\right)^n \times \frac{1}{3} = \frac{2^n}{3^{n+1}}$$
$$\mathbb{P}(B \cap R_1 \cap \dots \cap R_n) = \mathbb{P}_B(R_1 \cap \dots \cap R_n) \times \mathbb{P}(B) = \left(\frac{1}{3}\right)^n \times \frac{2}{3} = \frac{2}{3^{n+1}}$$

On en déduit :

$$p_n = \frac{\frac{2^n}{3^{n+1}}}{\frac{2^n}{3^{n+1}} + \frac{2}{3^{n+1}}} = \frac{2^{n-1}}{2^{n-1} + 1} = \frac{1}{1 + \frac{1}{2^{n-1}}}$$

7. Quelle est la limite de p_n lorsque $n \to +\infty$? Donner une interprétation.

D'après l'expression établie à la question précédente,

$$\lim_{n \to +\infty} p_n = \frac{1}{1+0} = 1$$

Interprétation: lorsqu'on voit un grand nombre de "rouges" consécutifs apparaître, il est fort probable que le dé utilisé soit le A.

8. Une personne réalise cette expérience avec n = 8.
Un parieur arrive après coup (il n'a pas vu le dé utilisé par le joueur) et apprenant que le joueur a obtenu "rouge" huit fois de suite, il dit : "je suis sûr à 99% que le joueur a joué avec le dé A". A-t-il raison? Si n = 8, alors la probabilité que le joueur ait joué avec le dé A sachant qu'il n'a obtenu que des "rouges" est p₈.

Le parieur a donc raison si et seulement si $p_8 \ge 0,99$, et c'est le cas car :

$$p_8 = \frac{2^7}{2^7 + 1} = \frac{128}{129} > 0,99$$

Exercice 0.2. Équation matricielle.

1. Soit α un réel. On considère la matrice A à coefficients réels définie par

$$A = \left(\begin{array}{ccc} 2 + \alpha & 2 & 2\\ 2 & 5 & 0\\ 2 & 0 & 4 + \alpha \end{array}\right)$$

(a) Montrer qu'il existe une unique valeur de α telle que 5 soit une valeur propre de A.

Le réel 5 est valeur propre de la matrice A si et seulement si $A-5I_3$ a un noyau non nul.

Cela revient à dire que $A - 5I_3$ n'est pas inversible ou encore que $det(A - 5I_3) = 0$.

Or, det
$$(A - 5I_3)$$
 = $\begin{vmatrix} \alpha - 3 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & \alpha - 1 \end{vmatrix} = -2 \begin{vmatrix} 2 & 2 \\ 0 & \alpha - 1 \end{vmatrix} = 4(1 - 2)$

 α), donc 5 est valeur propre de A si et seulement si $\alpha = 1$.

On suppose que α prend désormais la valeur déterminée à la question précédente.

(b) Déterminer le spectre de A.

Avec
$$\alpha=1$$
, on a $A=\left(\begin{array}{ccc} 3 & 2 & 2 \\ 2 & 5 & 0 \\ 2 & 0 & 5 \end{array}\right)$, donc le polynôme caractéris-

tique de A vaut :
$$\chi_A(X) = \det(XI_3 - A) = \begin{vmatrix} X - 3 & -2 & -2 \\ -2 & X - 5 & 0 \\ -2 & 0 & X - 5 \end{vmatrix}$$

$$=_{C_3\leftarrow\overline{C_3}-C_2} \left| \begin{array}{ccc} X-3 & -2 & 0 \\ -2 & X-5 & 5-X \\ -2 & 0 & X-5 \end{array} \right| En factorisant la dernière$$

colonne par X-5 (c'est rassurant, car on sait que 5 est racine de P_A d'après la question précédente), il vient :

$$\chi_A(X) = (X-5) \begin{vmatrix} X-3 & -2 & 0 \\ -2 & X-5 & -1 \\ -2 & 0 & 1 \end{vmatrix} =_{L_2 \leftarrow \overline{L_2} + L_3} (X-5) \begin{vmatrix} X-3 & -2 & 0 \\ -4 & X-5 & 0 \\ -2 & 0 & 1 \end{vmatrix}$$

Enfin, on développe par rapport à la dernière colonne :

$$\chi_A(X) = (X-5) \begin{vmatrix} X-3 & -2 \\ -4 & X-5 \end{vmatrix} = (X-5) (X^2 - 8X + 7) = (X-5)(X-1)(X-7)$$

Le spectre de A est l'ensemble des racines de χ_A , donc :

$$sp(A) = \{1; 5; 7\}.$$

(c) Vérifier le résultat de la question précédente en considérant $\operatorname{Tr}(A)$ et $\det(A)$.

Puisque χ_A est scindé sur \mathbb{R} , on sait que $\operatorname{Tr}(A)$ vaut la somme des valeurs propres de A (comptées avec multiplicité), donc on devrait avoir $\operatorname{Tr}(A) = 1 + 5 + 7 = 13$.

C'est bien le cas $\operatorname{car}\operatorname{Tr}(A)=3+5+5=13$.

On sait également que det(A) vaut le produit des valeurs propres de A (comptées avec multiplicité), donc on devrait avoir $det(A) = 1 \times 5 \times 7 = 35$.

C'est bien le cas car :

$$det(A) = \begin{vmatrix} 3 & 2 & 2 \\ 2 & 5 & 0 \\ 2 & 0 & 5 \end{vmatrix}$$
$$= 2 \begin{vmatrix} 2 & 2 \\ 5 & 0 \end{vmatrix} + 5 \begin{vmatrix} 3 & 2 \\ 2 & 5 \end{vmatrix} = 2 \times (-10) + 5 \times 11 = 55 - 20 = 35$$

- (d) La matrice A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$?

 Le polynôme caractéristique de A est scindé à racines simples, donc A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.
- 2. Soit $(a;c) \in \mathbb{R}^2$ avec $c \neq 0$. On considère la matrice B à coefficients réels définie par :

$$B = \left(\begin{array}{ccc} a+c & 0 & c \\ 0 & a+2c & 0 \\ c & 0 & a+c \end{array}\right)$$

(a) Démontrer que le spectre de B est $\{a; a + 2c\}$.

Le polynôme caractéristique de $B=\left(egin{array}{ccc} a+c & 0 & c \\ 0 & a+2c & 0 \\ c & 0 & a+c \end{array} \right)$

vaut

$$\chi_B(X) = \det(XI_3 - B) = \begin{vmatrix}
X - a - c & 0 & -c \\
0 & X - a - 2c & 0 \\
-c & 0 & X - a - c
\end{vmatrix}$$

En développant par rapport à la deuxième ligne, on a :

$$\chi_B(X) = (X - a - 2c) \begin{vmatrix} X - a - c & -c \\ -c & X - a - c \end{vmatrix}$$

$$= (X - a - 2c) ((X - a - c)^2 - c^2)$$

c'est- à-dire (en utilisant l'identité remarquable $u^2-v^2=(u-v)(u+v)$) :

$$\chi_B(X) = (X - a - 2c)(X - a - c - c)(X - a - c + c) = (X - a)(X - a - 2c)^2$$

Vu que $c \neq 0$, les deux racines a et a + 2c sont différentes, donc B possède deux valeurs propres : a (qui est simple), et a + 2c (qui est double).

(b) Vérifier le résultat de la question précédente en considérant Tr(B). Puisque χ_B est scindé sur \mathbb{R} , on doit avoir :

$$Tr(B) = a + (a + 2c) + (a + 2c) = 3a + 4c$$

et c'est bien le cas car Tr(B) = (a+c)+(a+2c)+(a+c) = 3a+4c.

(c) Montrer que B est diagonalisable.

La matrice B possède deux sous-espaces propres distincts : $E_a(B) = K \operatorname{er}(B - aI_3)$ et $E_{a+2c}(B) = K \operatorname{er}(B - (a+2c)I_3)$.

La valeur propre a est de multiplicité 1, donc $\dim (E_a(B)) = 1$ nécessairement.

La valeur propre a+2c est de multiplicité 2, donc dim $(E_{a+2c}(B)) \in \{1,2\}.$

Or, la matrice $B - (a+2c)I_3 = \begin{pmatrix} -c & 0 & c \\ 0 & 0 & 0 \\ c & 0 & -c \end{pmatrix}$ est de rang

 $1(c \neq 0)$, donc son noyau est de dimension 3 - 1 = 2, ce qui donne $\dim(E_{a+2c}(B)) = 2$.

Finalement, on a dim $(E_a(B))$ + dim $(E_{a+2c}(B))$ = 3 = dim (\mathbb{R}^3) , donc B est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.

(d) Déterminer une matrice D diagonale, de la forme $D = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \mu \end{pmatrix}$,

où $(\lambda, \mu) \in \mathbb{R}^2$, et une matrice inversible P de $\mathcal{M}_3(\mathbb{R})$ telles que $P^{-1}BP = D$.

Puisque B est diagonalisable, elle est semblable $\dot{a} = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \mu \end{pmatrix}$,

avec $\lambda = a$ (la valeur propre simple) et $\mu = a + 2c$ (la double). Pour trouver une matrice $P \in GL_3(\mathbb{R})$ telle que $P^{-1}BP = D$, il suffit de déterminer une base de chaque sous-espace propre.

$$E_a(B) = \operatorname{Ker} \begin{pmatrix} c & 0 & c \\ 0 & 2c & 0 \\ c & 0 & c \end{pmatrix} = \left\{ (x, y, z) \in \mathbb{R}^3, x + z = 0 \text{ et } y = 0 \right\} = \operatorname{Vect} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

$$E_{a+2c}(B) = \operatorname{Ker} \begin{pmatrix} -c & 0 & c \\ 0 & 0 & 0 \\ c & 0 & -c \end{pmatrix} = \left\{ (x, y, z) \in \mathbb{R}^3, x = z \right\} = \operatorname{Vect} \left(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right)$$

$$En \ posant \ (\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}) = \left(\left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array} \right), \left(\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right), \ on \ a \ donc$$

une base de \mathbb{R}^3 formée de vecteurs propres de B.

Matriciellement : en posant $P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$ (attention à

l'ordre des vecteurs propres!), on a donc $P^{-1}BP = D$.

(e) On veut résoudre l'équation matricielle :

$$B \times N = N \times B$$
 (E_1)

d'inconnue $N \in \mathcal{M}_3(\mathbb{R})$.

Montrer que N est solution de (E_1) si et seulement si la matrice $N' = P^{-1}NP$ est solution de l'équation :

$$D \times N' = N' \times D \quad (E_2)$$

Puisque $D = P^{-1}BP$, on a $B = PDP^{-1}$, donc:

$$BN = NB \iff PDP^{-1}N = NPDP^{-1}$$

P étant inversible, on conserve l'équivalence en multipliant à gauche par P^{-1} et à droite par P. Donc :

$$BN = NB \iff P^{-1} (PDP^{-1}N) P = P^{-1} (NPDP^{-1}) P$$
$$\iff D \underbrace{\left(P^{-1}NP\right)}_{=N'} = \underbrace{\left(P^{-1}NP\right)}_{=N'} D.$$

Finalement, on a $BN = NB \iff DN' = N'D$, ce qu'il fallait montrer.

Dans la suite, on note \mathscr{S}_1 l'ensemble des solutions N de l'équation (E_1) , et \mathscr{S}_2 l'ensemble des solutions N' de l'équation (E_2) .

(f) Montrer que \mathscr{S}_1 est un sous-espace vectoriel de $\mathscr{M}_3(\mathbb{R})$. La matrice nulle $\tilde{0}$ est dans \mathscr{S}_1 , car $B \times \tilde{0} = \tilde{0} = \tilde{0} \times B$. Si deux matrices N_1 et N_2 sont dans \mathscr{S}_1 et si $\lambda \in \mathbb{R}$, alors la matrice $\lambda N_1 + N_2$ reste dans \mathscr{S}_1 puisque:

$$B \times (\lambda N_1 + N_2) = \lambda \underbrace{BN_1}_{=N_1B} + \underbrace{BN_2}_{=N_2B} = \lambda N_1B + N_2B = (\lambda N_1 + N_2) \times B$$

Finalement, l'ensemble \mathscr{S}_1 contient l'élément neutre de $\mathscr{M}_3(\mathbb{R})$ et il est stable par somme et multiplication externe : c'est donc un sous-espace vectoriel de $\mathscr{M}_3(\mathbb{R})$.

On admet que \mathscr{S}_2 est aussi un sous-espace vectoriel de $\mathscr{M}_3(\mathbb{R})$ (c'est la même preuve).

(g) Déterminer l'ensemble \mathscr{S}_2 . On pourra poser $N' = \begin{pmatrix} r & s & t \\ u & v & w \\ x & y & z \end{pmatrix}$.

Soit
$$N' = \begin{pmatrix} r & s & t \\ u & v & w \\ x & y & z \end{pmatrix}$$
.

Puisque $D = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & u \end{pmatrix}$, on a :

$$DN' = N'D \iff \begin{pmatrix} \lambda r & \lambda s & \lambda t \\ \mu u & \mu v & \mu w \\ \mu x & \mu y & \mu z \end{pmatrix} = \begin{pmatrix} \lambda r & \mu s & \mu t \\ \lambda u & \mu v & \mu w \\ \lambda x & \mu y & \mu z \end{pmatrix} \iff \begin{cases} \lambda s = \mu s \\ \lambda t = \mu t \\ \mu u = \lambda u \\ \mu x = \lambda x \end{cases}$$

Puisque
$$\lambda \neq \mu(c \neq 0)$$
, cela équivant à
$$\begin{cases} s = 0 \\ t = 0 \\ u = 0 \\ x = 0 \end{cases} .$$

Finalement, les éléments de \mathcal{S}_2 sont les matrices $N' = \begin{pmatrix} r & 0 & 0 \\ 0 & v & w \\ 0 & y & z \end{pmatrix}$,

avec r, v, w, y, z réels.

(h) En déduire une base et la dimension de \mathcal{S}_2 . La question précédente montre que \mathcal{S}_2 est engendré par les matrices :

$$M_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, M_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, M_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$M_{4} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, M_{5} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

puisque:

$$\begin{pmatrix} r & 0 & 0 \\ 0 & v & w \\ 0 & y & z \end{pmatrix} = rM_1 + vM_2 + wM_3 + yM_4 + zM_5$$

Ceci montre que la famille $(M_i)_{1 \leq i \leq 5}$ engendre \mathscr{S}_2 . Or, on reconnaît des matrices "élémentaires": $(M_1, M_2, M_3, M_4, M_5) = (E_{1,1}, E_{2,2}, E_{2,3}, E_{3,2}, E_{3,3})$, donc il s'agit d'une famille libre (une sous-famille de la base canonique de $\mathscr{M}_3(\mathbb{R})$ en fait). Donc la famille $(E_{1,1}, E_{2,2}, E_{2,3}, E_{3,2}, E_{3,3})$ est une base de \mathscr{S}_2 , qui est donc de dimension 5.

(i) Montrer que l'application $\Phi: \mathscr{S}_1 \to \mathscr{S}_2$ définie par

$$\Phi(M) = P^{-1}MP$$

est un isomorphisme, et déterminer Φ^{-1} .

Tout d'abord, l'application Φ est bien définie car $(M \in \mathscr{S}_1 \Rightarrow P^{-1}MP \in \mathscr{S}_2)$ d'après la question 2.(e).

Ensuite, elle est linéaire, car $\forall M_1, M_2 \in \mathcal{S}_1, \forall \lambda \in \mathbb{R}$:

$$\Phi(\lambda M_1 + M_2) = P^{-1}(\lambda M_1 + M_2) P = \lambda P^{-1} M_1 P + P^{-1} M_2 P = \lambda \Phi(M_1) + \Phi(M_2)$$

Enfin, elle est bijective car pour toute matrice $Y \in \mathscr{S}_2$:

$$Y = \Phi(M) \Longleftrightarrow Y = P^{-1}MP \Longleftrightarrow M = PYP^{-1} \in \mathscr{S}_1$$

(d'après l'équivalence montrée en 2. (e)). On a ainsi montré que tout élément $Y \in \mathcal{S}_2$ admet un unique antécédent $M \in \mathcal{S}_1$ par l'application Φ .

Finalement, l'application Φ est une bijection linéaire de \mathcal{S}_1 dans \mathcal{S}_2 , donc c'est un isomorphisme.

La réciproque $\Phi^{-1}: \mathscr{S}_2 \to \mathscr{S}_1$ est donnée par le calcul précédent :

$$\Phi^{-1}(Y) = PYP^{-1}$$

(j) En déduire une base et la dimension de \mathcal{S}_1 . Les isomorphismes conservent les bases, donc puisque $(E_{1,1}, E_{2,2}, E_{2,3}, E_{3,2}, E_{3,3})$ est une base de \mathcal{S}_2 , on en déduit que

$$(\Phi^{-1}(E_{1,1}), \Phi^{-1}(E_{2,2}), \Phi^{-1}(E_{2,3}), \Phi^{-1}(E_{3,2}), \Phi^{-1}(E_{3,3}))$$

est une base de \mathcal{S}_1 (puisque Φ^{-1} est aussi un isomorphisme). Finalement, $(PE_{1,1}P^{-1}, PE_{2,2}P^{-1}, PE_{2,3}P^{-1}, PE_{3,2}P^{-1}, PE_{3,3}P^{-1})$ est une base de \mathcal{S}_1 et dim $(\mathcal{S}_1) = 5$

Exercice 0.3. Soit $\lambda > 0$ et $(u_n)_{n \in \mathbb{N}}$ la suite définie par

$$: \forall n \in \mathbb{N}, u_n = \frac{(-1)^n}{\lambda n + 1}.$$

1. La série $\sum u_n$ est-elle absolument convergente? On $a |u_n| = \frac{1}{\lambda n+1} \sim \sim \frac{1}{\lambda n}$.

Or on sait que $\sum_{n\geqslant 1}\frac{1}{\lambda n}$ est divergente (constante × série harmonique), donc d'après les critères de comparaison sur les séries à termes positifs, la série $\sum_{n\geqslant 1}|u_n|$ est divergente.

La série $\sum u_n$ n'est pas absolument convergente.

2. Vérifier que pour tout entier $n, u_n = (-1)^n \int_0^1 t^{\lambda n} dt$. On $a \int_0^1 t^{\lambda n} dt = \left[\frac{t^{\lambda n+1}}{\lambda n+1}\right]_0^1 = \frac{1}{\lambda n+1}$. On a donc bien $u_n = (-1)^n \int_0^1 t^{\lambda n} dt$.

- 3. (a) Montrer que pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} u_k = \int_0^1 \frac{\mathrm{d}t}{1+t^{\lambda}} + r_n$ en précisant la valeur de r_n . $\sum_{k=0}^{n} u_k = \sum_{k=0}^{n} \left((-1)^k \int_0^1 t^{\lambda k} \, \mathrm{d}t \right) = \int_0^1 \left(\sum_{k=0}^{n} (-1)^k t^{\lambda k} \right) \mathrm{d}t$ $= \int_0^1 \left(\sum_{k=0}^{n} \left(-t^{\lambda} \right)^k \right) \mathrm{d}t = \int_0^1 \left(\frac{1 - \left(-t^{\lambda} \right)^{n+1}}{1 + t^{\lambda}} \right) \mathrm{d}t$ $= \int_0^1 \frac{1}{1 + t^{\lambda}} \mathrm{d}t - \int_0^1 \frac{(-1)^{n+1} t^{\lambda(n+1)}}{1 + t^{\lambda}} \mathrm{d}t$ On a donc $\sum_{k=0}^{n} u_k = \int_0^1 \frac{1}{1 + t^{\lambda}} \mathrm{d}t + r_n$ avec $r_n = -\int_0^1 \frac{(-1)^{n+1} t^{\lambda(n+1)}}{1 + t^{\lambda}} \mathrm{d}t$.
 - (b) En utilisant le fait que $\frac{t^{\lambda(n+1)}}{1+t^{\lambda}} \leqslant t^{\lambda(n+1)}$ pour tout $t \in [0;1]$, montrer que $\lim_{n \to +\infty} r_n = 0$.

 On a:

$$|r_n| = \left| -\int_0^1 \frac{(-1)^{n+1} t^{\lambda(n+1)}}{1+t^{\lambda}} dt \right| \leqslant \int_0^1 \frac{t^{\lambda(n+1)}}{1+t^{\lambda}} dt$$
$$\leqslant \int_0^1 t^{\lambda(n+1)} dt = \frac{1}{\lambda(n+1)+1}$$

On a donc:
$$0 \le |r_n| \le \frac{1}{\lambda(n+1)+1}$$
.
Or $\lim_{n \to +\infty} \frac{1}{\lambda(n+1)+1} = 0$ donc $\lim_{n \to +\infty} r_n = 0$.

(c) En déduire que la série $\sum u_n$ est convergente et que l'on a :

$$\sum_{n=0}^{+\infty} u_n = \int_0^1 \frac{\mathrm{d}t}{1+t^\lambda}.$$

Grâce aux deux question précédentes, on obtient que

$$\lim_{n \to +\infty} \sum_{k=0}^{n} u_k = \int_0^1 \frac{1}{1+t^{\lambda}} dt$$

c'est-à-dire les sommes partielles ont une limite finie. Ainsi la série $\sum u_n$ est convergente et $\sum_{n=0}^{+\infty} u_n = \int_0^1 \frac{1}{1+t^{\lambda}} dt$.

4. En déduire les valeurs de $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1}$ et $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$.

En appliquant la question précédente avec $\lambda = 1$, on obtient :

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} = \int_0^1 \frac{1}{1+t} \, dt = [\ln(1+t)]_0^1 = \ln(2)$$

Et en appliquant la question précédente avec $\lambda = 2$, on obtient :

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \int_0^1 \frac{1}{1+t^2} dt = [\arctan(t)]_0^1 = \frac{\pi}{4}$$

Dans cet exercices on a illustré le fait qu'il existe des séries convergentes mais pas absolument convergentes.